PHYSICS						
Course Code	FE 120 / FE220		Credits	3		
Scheme of Instruction	L	Т	Р	TOT	AL	
Hours/ Week	3	0	0	39 hrs /	39 hrs/sem	
Scheme of Examination	IA	TW	TM	Р	0	
TOTAL = 125 marks	25	0	100	0	0	

Course Outcomes:

The student will be able to:

Logically derive necessary formulae using basic concepts of physics
Explain thin film interference and production of ultrasonics and demonstrate
its various scientific and industrial applications
Differentiate between the various types of magnetic materials and explain
semiconductor transport phenomena
Illustrate the basic principles of LASERs and fibre optics and its applications in
various industries
Explain various concepts and applications of modern physics like X-rays and
wave-particle duality
Solve problems in various topics of fundamental and modern physics

UNIT -1		
INTERFERENCE OF LIGHT:		
Geometric and optical path, Phase change at reflection (only statement), Interference based on division of amplitude, Interference due to reflected and transmitted light in thin parallel film, Interference in wedge shaped film, Newton's rings for reflected and transmitted light, Determination of radius of curvature of plano-convex lens, wavelength of light used and refractive index of liquid using Newton's ring experiment, applications of interference.(Surface smoothness) ULTRASONICS : Production of ultrasonic waves, Magnetostriction, Piezoelectric oscillator,	10hrs	
detection of ultrasonic waves, Properties, Application of ultrasonics in various		
fields, Measurement of wavelength and velocity by acoustic diffraction grating.		
UNIT -2		
MAGNETISM : Introduction, Origin of magnetization, Classification of magnetic materials, Magnetic hysteresis, Soft and hard magnetic materials, Applications of magnetic materials. Electron Ballistics: CRO		
SEMICONDUCTORS : Band theory of solids, Energy Gap, Energy band structure of semiconductors, Mobility, Drift velocity, Conductivity of charge carriers, Hall effect		
UNIT -3		
LASERS : Interaction of radiation with matter from quantum mechanical point of view: absorption, stimulated and spontaneous emission of radiation, Active medium, Metastable state, Einstein's theory of stimulated emission(no derivation), Condition for light amplification, Population inversion, Pumping, Pumping		
schemes, Optical resonator, Properties of laser, He-Ne laser, Ruby laser, Applications.		
FIBER OPTICS : Total internal reflection, Propagation of light in optical fiber, Structure of an optical fiber and fiber cable, Acceptance angle and cone,		

Numerical aperture, Modes of propagation, Types of optical fibers: single and multimode fibers, Applications- fiber optic communication, endoscopy.	
UNIT -4	
 X-RAYS: Origin of X-rays, characteristic and continuous X-ray spectromodely slaw, X-ray diffraction: Bragg's law and Bragg's spectrometer, properties and applications. WAVE-PARTICLE DUALITY: Compton effect, Expression for Compton shift Wave nature of particle, de Broglie hypothesis, Davisson-Germer experiment. 	5

TE	TEXTBOOKS	
1	M. N. Avadhanulu& P. G. Kshirsagar; A text book of engineering Physics; S. Chand & company Pvt. Ltd. Revised edition 2015.	
2	A. S. Vasudeva; Modern Engineering Physics; S. Chand & Company Pvt. Ltd. Revised Edition. 2015	
RE	REFERENCES	
1	Uma Mukherji; Engineering Physics; Narosa Publications. 2012	
2	R. K. Gaur & S. L. Gupta; Engineering Physics; Dhanpat Rai Publications Pvt. Ltd. Reprint 2013.	
3	K. Rajagopal; Engineering Physics; PHI Learning Pvt. Ltd. Third Printing 2009.	